1. EachPod

4 - Risks from Learned Optimization with Evan Hubinger

Author
Daniel Filan
Published
Wed 17 Feb 2021
Episode Link
https://traffic.libsyn.com/axrpodcast/AXRP_4_Evan_Hubinger_Editor_Note_Added.mp3

In machine learning, typically optimization is done to produce a model that performs well according to some metric. Today's episode features Evan Hubinger talking about what happens when the learned model itself is doing optimization in order to perform well, how the goals of the learned model could differ from the goals we used to select the learned model, and what would happen if they did differ.

 

Link to the paper - Risks from Learned Optimization in Advanced Machine Learning Systems: arxiv.org/abs/1906.01820

Link to the transcript: axrp.net/episode/2021/02/17/episode-4-risks-from-learned-optimization-evan-hubinger.html

Evan Hubinger's Alignment Forum profile: alignmentforum.org/users/evhub

Share to: